

Сравнение вариантов использования осадков очистных сооружений канализации на основе анализа жизненного цикла

Марцуль В.Н., заведующий кафедрой промышленной экологии

Белорусский государственный технологический университет

ВОДНАЯ ГАРМОНИЯ ЕВРАЗИЯ II

Гармонизация обучения и педагогических подходов высшего образования в водной сфере

Постановка проблемы

- Экономический рост сопровождается пропорциональным, а иногда и опережающим ростом количества отходов. Темпы роста объемов использования большинства отходов значительно ниже темпов их образования.
- Решение проблемы отходов является приоритетным направлением деятельности в области ресурсосбережения и охраны окружающей среды.
- Попытки ее решения без детального экологоэкономического анализа возможных вариантов обращения с отходами часто приводит к принятию решений, последствия реализации которых негативно сказываются на окружающей среде.

Постановка проблемы

Не всегда выбор наилучшего варианта обращения с отходами очевиден, так как используемые методики оценки эколого-экономической эффективности природоохранных мероприятий далеки от совершенства.

Общепризнанной методологией, позволяющей провести комплексный анализ продукции и производственных процессов, использования ресурсов с учетом экологических последствий является анализ жизненного цикла (Life cycle Analysis – LCA).

■ Идея комплексного анализа жизненного цикла продукции впервые была реализована для решения практических задач, связанных с охраной окружающей среды, в конце 60-х годов прошлого столетия. Особенностью такого анализа была ориентация на количественную оценку воздействий на окружающую среду, связанных как с потреблением всех видов ресурсов, так и с эмиссией загрязняющих веществ

Общепризнанной методологией, позволяющей провести комплексный анализ продукции и производственных процессов, использования ресурсов с учетом экологических последствий является анализ жизненного цикла (Life cycle Analysis – LCA).

Методология АЖЦ и методики выполнения отдельных ее этапов активно развивалась и в 90-е годы 20 столетия сформировались как перспективное направление научных исследований и практической деятельности в области охраны окружающей среды.

- В настоящее время активно разрабатываются методики АЖЦ, дополненные экономической оценкой входных и выходных потоков для исследуемой системы (Economic Input-Output Life Cycle Analysis EIO-LCA).
- Метод использует информацию о межпроизводственных и межотраслевых материальных потоках для оценки общего объема выбросов, сбросов и отходов по всей цепочке поставок (базируется на EN ISO 14051:2011
 Управление окружающей средой. Учет стоимости материальных потоков. Общая структура)

- Основные результаты исследований по методологии, методикам и практике применения АЖЦ представляются в журналах с высоким импакт фактором:
- The International Journal of Life Cycle Assessment
- Journal of Industrial Ecology
- Journal of Cleaner Production
- Integrated Environmental Assessment and Management
- Progress in Industrial Ecology
- В конце 90-х годов прошлого столетия в составе стандартов ИСО серии 14000 были разработаны и введены в действие стандарты по анализу жизненного цикла (ISO 14040, ISO 14041, ISO 14042, ISO 14043 и др.), определяющие принципы и структуру LCA, основные этапы его проведения.

- ISO 14040 Управление окружающей средой. Оценка жизненного цикла. Принципы и структурная схема.
- Дает обзор практики применения и ограничения на применение ОЖЦ для широкого круга потенциальных пользователей и заинтересованных сторон.
- Структурная схема (основные этапы оценки жизненного цикла представлены ниже.

Структурная схема (основные этапы оценки жизненного цикла)

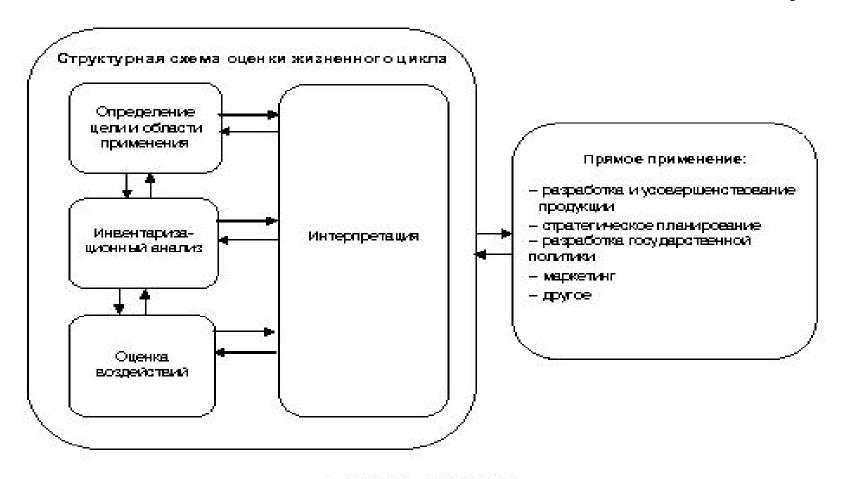


Рисунок 1 – Этапы ОЖЦ

Основные этапы ОЖЦ

- ОЖЦ включает:
- определение и области (границ) оценки жизненного цикла (ОЖЦ);
- сбор информации, инвентаризационный анализ жизненного цикла (ИАЖЦ) с количественной оценкой входных (ресурсы, энергия, энергоносители) и выходных (выбросы, сбросы, отходы) потоков для оцениваемого объекта (процесса) на всех этапах ЖЦ;
- оценку воздействия ЖЦ (ОВЖЦ);
- интерпретацию результатов оценки жизненного цикла.

- ISO 14041 Управление окружающей средой. Оценка жизненного цикла. Параметрический анализ жизненного цикла
- Стандарт рассматривает две фазы АЖЦ цель и область исследования, а также инвентаризационный анализ жизненного цикла (ИАЖЦ).
- Цель и область исследования устанавливают, для чего выполняется АЖЦ и описывают систему и категории данных, подлежащие исследованию. ИАЖЦ включает сбор данных, необходимых для исследования, а также инвентаризацию входных и выходных потоков.
- Цель исследования может быть пересмотрена из-за появления непредвиденных обстоятельств и ограничений или в результате получения дополнительной информации.

СТБ ИСО/ТО 14049-2007

- ISO/TO 14049-2007 Экологический менеджмент. Оценка жизненного цикла. Применение ISO 14044 для инвентаризационного анализа жизненного цикла.
- Стандарт содержит примеры применения на практике инвентаризационного анализа жизненного цикла (ИАЖЦ), базирующегося на рекомендациях ИСО 14041.

- ISO 14042 Экологический менеджмент. Оценка жизненного цикла. Оценка воздействия жизненного цикла.
- Стандарт содержит описание и общую структуру фазы оценки воздействия жизненного цикла (ОВЖЦ) оценки жизненного цикла, особенности и соответствующие ограничения. Стандарт определяет требования к выполнению фазы ОВЖЦ и взаимосвязям между ОВЖЦ и другими фазами ОЖЦ.
- Цель ОВЖЦ состоит в оценке данных инвентаризационного анализа жизненного цикла продукционной системы для лучшего понимания их экологической значимости.

- При создании моделей фазы ОВЖЦ выбираются экологические проблемы, называемые категориями воздействий, и используются показатели категорий для представления и объяснения результатов ИАЖЦ.
- Показатели категорий должны отражать агрегированные выбросы (сбросы) или использование ресурсов для каждой категории воздействия. Эти показатели категорий представляют собой потенциальные экологические воздействия.

- ISO 14043 Экологический менеджмент. Оценка жизненного цикла. Интерпретация жизненного цикла.
- Описывает заключительную фазу оценки жизненного цикла, процедуру, в которой результаты инвентаризационного анализа жизненного цикла и оценки воздействий (на протяжении) жизненного цикла, если таковая проводится, или обеих этих фаз вместе обобщаются и обсуждаются в качестве основы для заключений, рекомендаций и принятия решений в соответствии с целями и областью исследований.

- ISO 14044. Экологический менеджмент. Оценка жизненного цикла. Требования и рекомендации
- Содержит рекомендации для подготовки и проведения критического обзора результатов инвентаризационного анализа жизненного цикла, результатов оценки воздействия, а также характера и качества собранных данных.

Оценка воздействия жизненного цикла

- Оценка воздействия ЖЦ, как стадия LCA, позволяет системно представить экологические и ресурсные проблемы одной или большего числа продукционных систем.
- В процессе ОВЖЦ результат ИАЖЦ переводятся в категории воздействия.
- Для каждой категории воздействия выбирают показатель категории, и определяют его количественное значение.
- Совокупность значений показателей воздействия позволяет количественно охарактеризовать воздействие на окружающую среду, связанное с потреблением ресурсов, и выходными потоками продукционной системы.

Оценка воздействия жизненного цикла

- Особенностью ОВЖЦ является то, что она предполагает использование так называемой функциональной единицы для сравнения различных продукционных систем, продукции.
- При оценке воздействия используются процедуры нормализации и взвешивания показателей воздействия

Оценка жизненного цикла- проблемы

- Несмотря на то, что методология LCA достаточно проста для понимания и выглядит логичной и обоснованной, ее практическое применение часто связано с рядом трудностей, в первую очередь касающихся недостатка или неприемлемого качества информации.
- Проблемы, связанные с практической реализацией методологии LCA, поразному решаются в различных методиках. Все известные методики выполнения основных этапов LCA и интерпретации его результатов имеют ряд общих черт, но и по ряду существенных признаков различаются.
- Отличия касаются методик и моделей, которые используются для перевода результатов инвентаризации в показатели воздействия.
- Оценка жизненного цикла является хорошим инструментом для оценки экологических характеристик процессов и продукции, и широко используется в практике проектирования и создания новых видов продукции и услуг, однако весьма трудоемка и дорогостояща.

Impact Assessment Methods

ReCiPe

BEES

Eco-indicator 99

Eco-indicator 95

CML 92

CML 2 (2000)

EDIP/UMIP

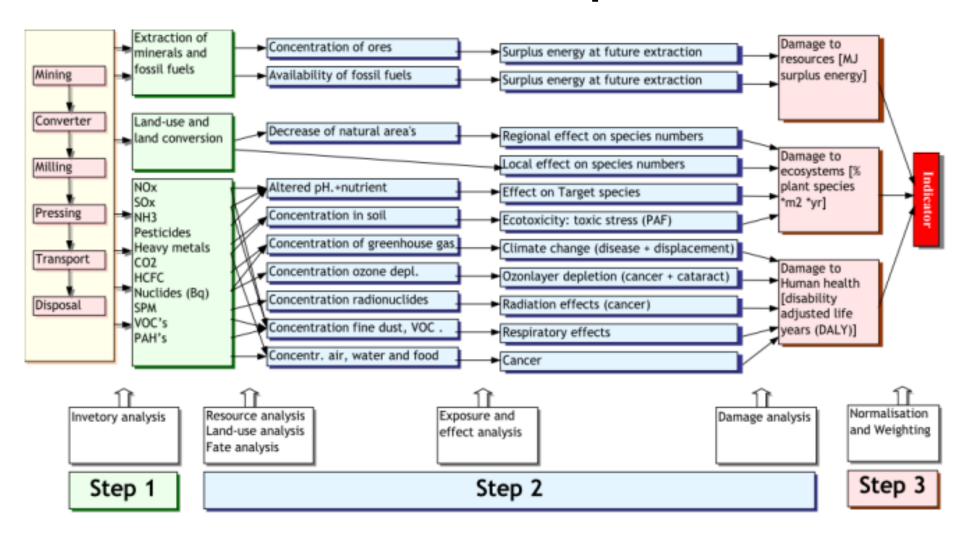
EPS 2000

Ecopoints 97

Impact 2002+

TRACI

EPD method


Cumulative Energy Demand

IPCC Greenhouse gas emissions

■ При оценке воздействия жизненного цикла учитывается девять основных процессов, причиняющих вред здоровью людей и ущерб экосистемам, причем каждому из этих процессов приписывается определенный весовой коэффициент

Процессы	Весовые коэффициен ты	Критерии выявления				
Обеднение озонового слоя	100	Вероятность одной смерти в год на 10 ⁶ жителей				
Действие пестицидов	25	5%-я деградация экосистемы				
Действие канцерогенных веществ	1 IV Вероятность одной смерти в год на 10° жителей					
Повышение кислотности водных объектов	10	5%-я деградация экосистемы				
Эвтрофикация	5	5%-я деградация экосистемы				
Действие тяжелых металлов	5	Учитывается концентрация кадмия – основног экотоксиканта среди тяжелых металлов				
Действие зимнего смога Действие летнего смога	5 2,5	Учет жалоб в период действия смога, особенно со стороны астматиков и пожилых людей				
Парниковый эффект	2,5	Повышение температуры на 0,1 °C каждые 10 лет, 5%-я деградация экосистем				

Комплексный характер экоиндикаторов обусловлен тем, что они учитывают три компонента ущерба:

- - здоровье людей;
- качество экосистем;
- - природные ресурсы.

■ Ущерб здоровью людей выражается так называемым приведенным количеством потерянных лет (DALYs — disability adjusted life years). Термин «приведенное количество» означает, что суммируются как потерянные годы жизни (YLL — years of life lost), так и годы прожитые в состоянии инвалидности (YLD — years lived disabled), и полученная сумма делится на число жителей Европы. показатели ущерба здоровью людей, наносимого основными воздействиями, рассчитанные на одного жителя Европы.

Значения комплексных экоиндикаторов, некоторых промышленных продуктов и процессов.

•	производство металлов (на 1 кг):
•	медь85 усл.ед.;
•	алюминий18 усл.ед.;
•	нержавеющая сталь17 усл.ед.;
•	сталь4,1 усл.ед.;
•	производство пластических материалов (на 1 кг):
•	полиуретан14 усл.ед.;
-	поликарбонат13 усл.ед.;
•	полипропилен
•	производство бумаги (на 1 кг)
•	производство стекла (на 1 кг)2,1 усл.ед.;
•	производство электроэнергии и тепла:
•	электроэнергия низкого напряжения (на 1 кВт.ч).0,67 усл.ед.;
•	электроэнергия высокого напряжения (на 1 кВт.ч).0,57 усл.ед.;
•	тепловая энергия от сжигания нефти (на 1 МДж тепла)0,15 усл.ед.;
•	тепловая энергия от сжигания газа (на 1 МДж тепла)0,063 усл.ед.;
-	перевозка грузов (на 1 т км):
•	грузовики 28 тонн
-	суда-контейнеровозы0,056 усл.ед.;
•	товарные поезда

EDIP

- В настоящее время используется методика EDIP2003, которая отличается от первого варианта EDIP97 более глубоким анализом вторичных воздействий (больше причинно-следственных связей, более полные цепочки «причина-следствие»).
- Уточнены процедуры нормализации и взвешивания показателей воздействия, что позволяет легче интерпретировать воздействие с позиций ущерба окружающей среде.
- Для нормализации и взвешиная в EDIP2003 используются эквивалентные значения, рассчитанные на одного человека.

ECO-SCARCITY

- Методика Eco-scarcity (Швейцария)впервые опубликована в 1990 году.
- Метод Eco-scarcity (экологического дефицита)
 позволяет путем взвешивания и агрегирования различных показателей оценивать воздействие на окружающую среду.
- Метод предназначен для экологических оценок «стандартных» продуктов или процессов. Кроме того, он часто используется как элемент системы экологического менеджмента (СЭМ) компаний, для оценки экологических аспектов организации.

SOFT

- Для выполнения практических работ по LCA разработано программное обеспечение, которое обеспечивает выполнение необходимых расчетов с использованием моделей, управление базами данных.
- Среди наиболее известных программных продуктов, позволяющих анализировать все стадии жизненного цикла – SimaPro, EcoLab, GaBi, TEAM,, WWLCAW и др.

Распространённые программные пакеты

AUDIT / APCC

LEGEP

Boustead Model 5.0

NIRE-LCA

CEDA OGIP

CMLCA REGIS

EcoScan life

SimaPro Analyst

EIME

SimaPro Compact

EIO-LCA SimaPro Developer

EMIS SIMBOX

EPS 2000

GaBi

TEAM Web Simulator

GEMIS

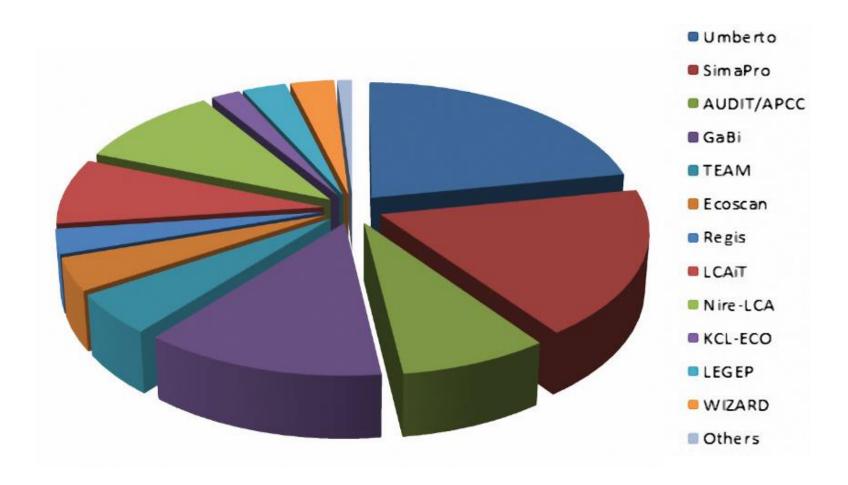
TRACI

JEMAI-LCA

Umberto

KCL-ECO

WISARD


LCAiT

WWLCAW

Диаграмма распределения по количеству реализованных лицензий

SimaPro

- полное семейство продуктов с SimaPro в пакете для любых нужд;
- интуитивно понятный интерфейс соответствующий ISO 14040;
- простое моделирование, с мощными вспомогательными функциями, готовыми оказывать вам помощь;
- параметризованные моделирования сценарного анализа;
- гибридная LCA с интегрированными базами данных ввода-вывода;
- прямые ссылки на Excel или базы данных ASP;
- прямые оценки воздействия на расчеты на каждой стадии

Базы данных

- Выполнение практических работ по LCA невозможно без наличия баз данных по процессам, продукции, которые содержат информацию о всех входах и выходах для рассматриваемых производственных процессов, продукции и услуг, показателях, используемых для нормализации и взвешивания и др.
- Примерами таких баз данных являются Ecoinvent Data (Швейцария), IVAM LCA Data (Голландия) и др.

Базы данных интегрированные в SimaPro 7

- Dutch Input Output Database 95;
- Ecoinvent system processes;
- Ecoinvent unit processes;
- European Life Cycle Database;
- EU & DK Input Output Database;
- Industry data 2.0;
- Introduction to SimaPro 7;
- LCA Food DK;
- Methods;
- Tutorial with wood example;
- USA Input Output Database 98;
- USLCI.

Осадки сточных вод

■ В последнее время для выбора возможных вариантов обращения с отходами применяется методология оценки жизненного цикла. Это прежде всего касается углеродсодержащих отходов, для которых могут быть предложены различные варианты обработки и использования. Много работ выполнено по анализу вариантов обращения с осадками сточных вод (ОСК).

Сценарии

Сценарий обработки	Конечный продукт	Способ обращения с конечным продуктом		
Обезвоживание	Иловый кек, 20 % сухих веществ, без изменения массы	захоронение		
Обезвоживание → известкование	Иловый кек, 30 % сухих веществ, увеличение массы на 15 %	сельское хозяйство, производство цемента		
Мезофильное анаэробное сбраживание → обезвоживание	Иловый кек, 20 % сухих веществ, уменьшение массы на 29 %	сельское хозяйство		
Аэробная обработка → обезвоживание	Иловый кек, 20 % сухих веществ, уменьшение массы на 29 %	сельское хозяйство		
Обезвоживание \rightarrow термическая сушка \rightarrow компостирование	Компост, 57 % сухих веществ, увеличение массы на 32 %	сельское хозяйство		
Обезвоживание → термическая сушка	Иловый кек, 36 % сухих веществ, без изменения массы	производство цемента		
Мезофильное анаэробное сбраживание → обезвоживание → термическая сушка	Иловый кек, 43 % сухих веществ, уменьшение массы на 29 %	производство цемента		
Аэробная обработка → обезвоживание → термическая сушка	Иловый кек, 43 % сухих веществ, уменьшение массы на 29 %	производство цемента		
Обезвоживание → сжигание во взвешенном слое	Зола, уменьшение массы на 70 %	Производство цемента, кирпича		

Выбросы в атмосферу и потребление энергии (на 1т)

	Обезво	Известк	Анаэро	Анаэро	Анаэро	Термиче	Терми	Анаэробн	Анаэро	Сжиган	Сжиган
	жива	ование	бное	бное	бное	ская	ческая	oe	бное	ие во	ие во
	ние		сбражив	сбражив	сбражив	сушка /	сушка	сбражива	сбражив	взвешен	взвешен
			ание	ание (с	ание	компост		ние (без	ание /	НОМ	НОМ
			(без	извест.)		ировани		известков	термиче	слое	слое
			известк			e		ания) /	ская	(NG)	(уголь)
			ования)					сушка	сушка		
SO ₂ , кг	0,1	0,3	-6,1	-6,0	4,9	0,5	0,1	-2,7	4,9	-6,9	45
СО, кг	0,1	1,2	-2,0	-1,6	2,5	0,3	0,3	-0,4	2,5	-3,0	29
NO_{x} , кг	0,1	0,2	0,1	0,2	0,7	1,2	1,5	1,8	1,9	-0,9	5
ЛОС, кг	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
РМ ₁₀ , кг	0,0	0,0	0,1	0,1	0,0	0,0	0,0	0,1	0,0	0,0	0,0
ПГП, кг СО ₂	12	550	-280	-57	210	260	340	-120	210	2100	300
Эл. эн, кВт·ч	19	81	-920	-890	730	70	19	-400	760	-100	-100
Топлив o ^c (MJ)	92	3500	65	1500	65	4300	5900	33	4800	23000	23000

Сокращение выбросов и энергозатрат при использовании осадков (на 30 тыс. тонн осадка по а.с.в., 21 тыс. тонн сброженного осадка, 9 тыс. тонн золы)

	Осадок вносится как удобрение	Термически высушенный осадок используется в пр-ве цемента	Сброженный и термически высушенный осадок используется в пр-ве цемента	Зола используется в пр-ве цемента	Зола используется в пр-ве кирпича
SO_2 , кг	$-2,0\cdot10^3$	$-6.8 \cdot 10^3$	$-2,4\cdot10^3$	-4,6·10 ¹	-1,4·100
СО, кг	$-8,4\cdot10^3$	$-4,2\cdot10^3$	$-2,0.10^3$	$-8,3\cdot10^2$	$-1.8 \cdot 10^2$
NO _x , кг	-1,3·10 ³	$-9,7\cdot10^{2}$	$-3,9\cdot10^2$	-8,5·10 ¹	-1,4·10 ¹
Летучие органические в-ва, кг	$-1,5\cdot10^3$	$-7,1\cdot10^{1}$	$-7,1\cdot10^{1}$	-7,1·10 ¹	-1,4·10 ¹
PM ₁₀ , кг	$-4,5\cdot10^2$	-1,0·10 ¹	-1,0·10 ¹	-1,0·10 ¹	-2,8·10 ⁻¹
GWE, кг CO_2	-2,4·10 ⁶	-4,4·10 ⁵	-2,3·10 ⁵	-1,2·10 ⁵	$-2,7\cdot10^3$
Электричество ^ь , кВт·ч	-5,9·10 ⁸	$-2,2\cdot10^3$	$-2,2\cdot10^3$	$-2,2\cdot10^3$	0
Топливо ^с (МДж)	-4,8·10 ⁷	-3,4·10 ⁶	-1,2·10 ⁶	-9,4·10 ⁴	-1,9·10 ⁴

Экологический и экономический анализ вариантов обращения с осадками сточных вод

Эконогический ана	ллиз		Экологический анализ					
Способ обработки	Способ обращения с конечным продуктом	Относительные затраты	SO ₂ , кг	ПГП, кг CO_2	Электроэнер гия, кВт·ч	Топливо (МДж)		
Обезвоживание	захоронение	1,0	$4,0.10^3$	3,8·10 ⁵	5,7·10 ⁵	$2,8\cdot10^6$		
Известкование	Внесение в почву	1,34	8,7·10 ³	$1,5\cdot10^7$	-5,9·108	5,8·10 ⁷		
Анаэробное сбраживание (без известкования)	Внесение в почву	1,19	-1,9·10 ⁵	-1,1·10 ⁷	-6,2·10 ⁸	-4,6·10 ⁷		
Анаэробное сбраживание (с известкованием)	Внесение в почву	1.34	-1,9·10 ⁵	-4,2·10 ⁶	-6,2·108	-2,9·10 ⁶		
Термическая сушка + компостирование	Внесение в почву	3,1	1,2·10 ⁴	5,6·10 ⁶	-5,9·108	8,3·10 ⁷		
Термическая сушка	Цементное производство	3.6	-2,6·10 ³	1,0.107	5,7·10 ⁵	1,8·108		
Анаэробное сбраживание (без известкования) + термическая сушка	Цементное производство	1,9	-8,4·10 ⁴	-4,1·10 ⁶	-1,2·10 ⁷	-2,0·10 ⁵		
Анаэробное сбраживание (с известкованием) + термическая сушка	Цементное производство	2,3	-8,1·10 ⁴	2,9·10 ⁶	-1,2·10 ⁷	4,5·10 ⁷		
Сжигание во взвешенном слое	Кирпичное/ цементное	7.3	$-2,1\cdot10^5$	$6.5 \cdot 10^7$	-3,2·10 ⁷	7,1·10 ⁸		

Выводы

- Анаэробная обработка с последующим использованием осадка в качестве удобрения является наилучшим вариантом, даже при использовании извести для стабилизации
- Если осадок не может использоваться в качестве удобрения, то наилучшим вариантом является анаэробное сбраживание с последующей сушкой и использованием при производстве цемента.