Технический Университет Молдовы

Факультет Урбанизма и Архитектуры

Профиль: Гражданское строительство

Специальность: 211.03. Инженерные сети в строительстве

ОБЗОР

ОЧИСТНЫЕ СООРУЖЕНИЯ МАЛОЙ И СРЕДНЕЙ ПРОИЗВОДИТЕЛЬНОСТИ

Аспирант, инженер Василий Вырлан Научный руководитель, профессор, кандидат технических наук Думитру Унгуряну

Кишинёв, 2018

Стратегия Молдовы для присоединения к Европейскому Союзу включает необходимость решения проблем доступа населения к системам водоснабжения и канализации путем модернизации существующих технологий или путем создания и эксплуатации новых и высокотехнологических объектов и предоставления качественных услуг.

Одними из них являются канализационные очистные сооружения.

ЦЕЛИ ИССЛЕДОВАНИЯ

Основной целью этой работы является разработка технологий и установок для очистки бытовых и промышленных сточных вод.

Основными задачами являются достижение следующих результатов:

- выгодная цена для рынка Республики Молдова;
- простая установка в эксплуатации;
- занятая площадь, как можно меньше;
- минимальный объем установки;
- быстрый и простой монтаж;
- производство избыточного ила небольших объемов;
- выгодное соотношение цены и качества;
- минимальное вмешательство оператора.

ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ

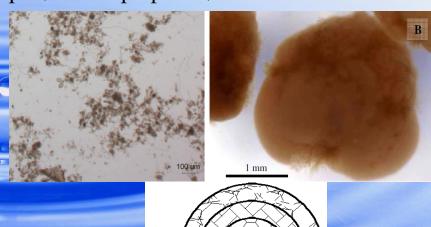
Технология компактной установки очистки сточных предлагаемая для исследования, основана вод, биологической очистке. Биологическая очистка в этой установке будет осуществляться с использованием гибридного процесса (активный ил + биологическая плёнка -MBBR). На стадии биологической очистке наблюдается за удалением биологически разлагаемых органических веществ, азота через процессы нитрификации - денитрификация и фосфора с помощью биологических процессов. После биологической очистки предусмотривается отделение ила с помощью тонкослойного отстойника.

ИСКУССТВЕННАЯ БИОЛОГИЧЕСКАЯ ОЧИСТКА

Наиболее важными конструкциями для искусственной биологической очистки являются биологические фильтры и аэротенки с активным илом. После искусственной биологической очистки всегда расположены вторичные отстойники, где происходит отделение биомассы или микрофлоры.

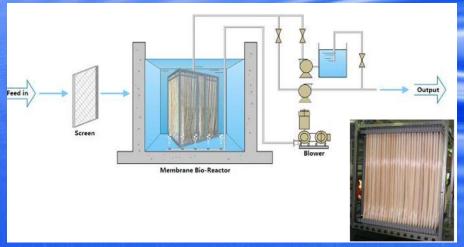
Биореактор с суспендированной микрофлорой

Этот процесс наиболее распространен и известен как процесс активного ила. Процесс очистки с активном илом называется так из-за биомассы, образованной непрерывным впрыском воздуха в сточные воды. В таком процессе микроорганизмы смешиваются с органическим веществом из сточных вод в условиях их роста с использованием органического вещества в качестве субстрата.

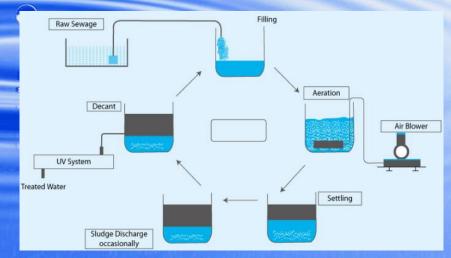

Процесс с комбинированной микрофлорой/гибридной (MBBR)

Процесс гибридной микрофлоры (суспендированная микрофлора прикреплённая микрофлора) часто используется в очистных сооружениях малой и средней производительности. Для увеличения концентрации активных необходимо микроорганизмов использовать твердую биозагрузку максимальной сцепляемой поверхностью для бактерий и обеспечить непрерывный и достаточный привод кислорода ДЛЯ активности микрофлоры.

Ф12×9 Ф16×16 Ф25×12 Ф25×12


Процесс биологической обработки аэробным гранулированным илом

Полученные гранулы имеют приблизительно сферические формы диаметром от 1 до 5 мм и не ограничиваются конкретными видами бактерий, позволяя в одной и той же грануле растить и жить как аэробным, так и анаэробным и аноксичным бактериям. Таким образом, в одном биореакторе осуществляются удаление БПК, и процесс нитрификации.


Биологическая очистка с мембранами

Мембранные биореакторы являются системой очистки сточных который илом, активным ВОД использует микропористые мембраны твердой отделения массы жидкой массы вместо вторичных отстоиников. Из-за полного удаления взвешенных твердых частиц через мембраны, осаждение активные ила, что является проблемой для обычного процесса биологической обработки, абсолютно не влияет качество очищенных сточных вод.

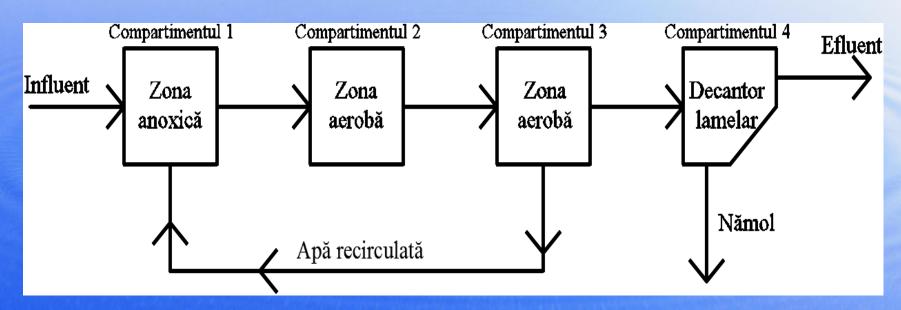
Процесс биологической очистки в циклических биореакторах (SBR)

Оследовательных циклические биореакторы представляют активные различные аэрационные бассейны с илом, в которых все этапы очистки сточных вод и активного ила происходят в одном и том же реакторе. В циклических биореакторах сточные воды поступают, через определенные промежутки времени И, следует последовательность из 5 фаз, который представляет собой цикл.

Описание экспериментальной установки

Для выполнения экспериментов была построена и установлена экспериментальная пилотная установка для биологической очистки сточных вод.

Технология очистки на этой экспериментальной установке относится к т. н. гибридной, то-есть с использованием взвешенной биомассы (активный ил) а также прикреплённой микрофлорой, которая растёт на движущихся частях/элементах (мобильная биозагрузка) — технология MBBR (mobile bed biological reactor).


Экспериментальная установка имеет размеры 4,5 х 1,0 х 3,0 m (Д х Ш х В), Вгидр=2,8 м, разделена на 4 отсека: аноксичный биореактор — два аэробных биореактора — тонкослойный отстойник.

Движение воды из одного отсека в другой происходит по восходященисходящему направлению.

Воздуходувки и системы аэрации из перфорированных труб из нержавеющей стали. Подача сточных вод осуществляется с помощью погружного насоса из уравнительного резервуара и поддерживается в стационарном режиме при разных расходах.

Технологическая схема экспериментальной установки

В случае гибридных биореакторов, с использованием твердых биозагрузок, удельная поверхность плёнки может достигать 400 - 800 м2/м3. Образование и поддержание биологических плёнок осуществляется путем аэрации неочищенной воды через систему искусственной аэрации в аэробной и без аэрации с механическим перемещиванием в анаэробных или аноксических стадиях. Биологическое удаление азота (нитрификация - денитрификация) требует как аэробную зону, так и аноксическую зону. В то же время с удалением азота уменьшается и органическое биоразлагаемое вещество (БПК₅).

Гидродинамический режим течения воде в биореакторе

Чтобы оценить функции распределения времени пребывания (гидродинамический режим) используется импульсный метод, который заключается во введении сигнала в притоке и измерение отклика в конце потока (в тонкослойном отстойнике).

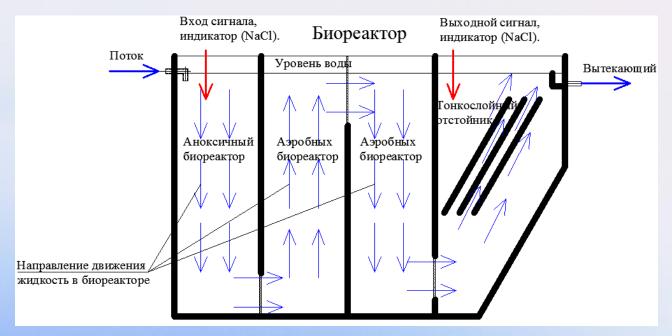
Эксперименты проводились в отсутствии химической реакции, и жидкость двигалась в стационарном режиме.

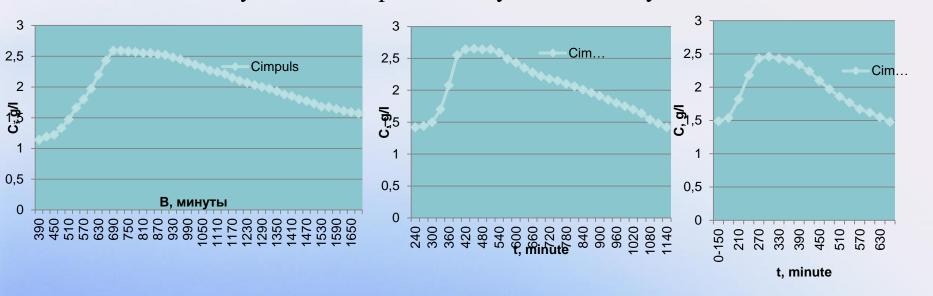
Входной сигнал вводится с помощью трассера, который должен удовлетворять следующим условиям:

- может быть измерен предпочтительно физическими методами даже при низких концентрациях;
- быть инертным (не реагировать) с жидкостью в системе, даже при низких концентрациях;
- не впитываться стенками установкой;
- может быть введен в систему в режиме, требуемого типом эксперимента.

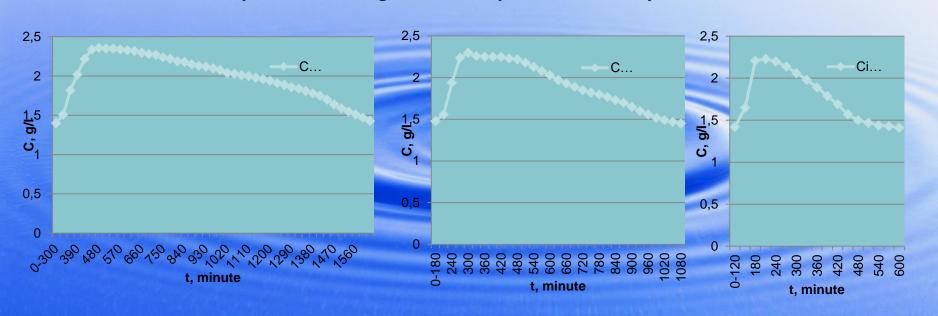
Для реализации такого сигнала, трассера вводится в начало потока технологической жидкости (в аноксичный биореактор). Добавленный объём трассера определяет концентрацию, К (г/л).

Для экспериментов в качестве трассера была использована соль (NaCl).

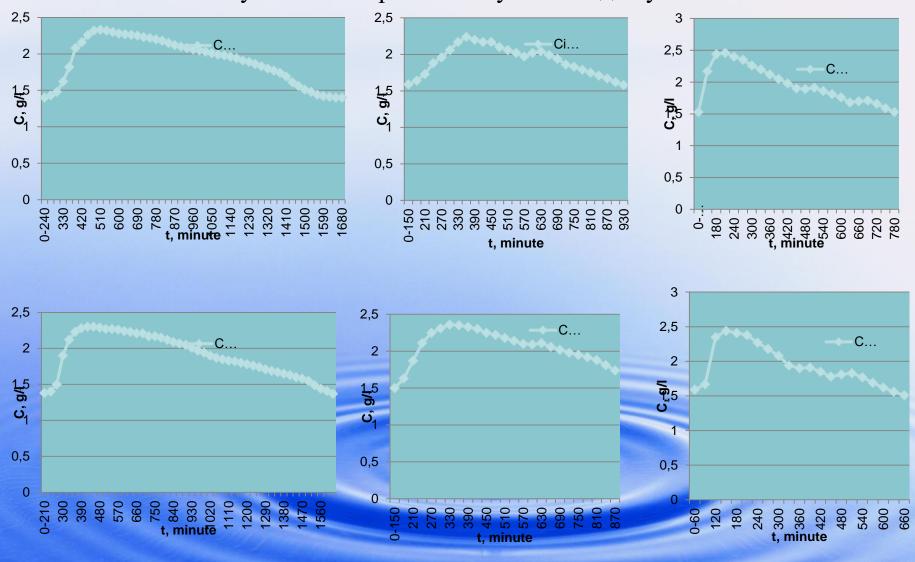



Схема потока жидкости в биореакторе

Эксперименты проводились при различных расходах воды: 0,5 м3/ч, 1,0 м3/ч и соответственно 2,0 м3/ч.


Было проведено 12 экспериментов для того, чтобы установить гидродинамический режим течения воде в биореакторе для различных условий с различными расходами воды а именно:

- условие № 1. Без аэрации, без перемешивания, без рециркуляции расход 0,5; 1,0; 2,0 м3/ч;
- условие № 2. С аэрациеи, с перемешиванием, без рециркуляции расход 0,5; 1,0; 2,0 м3/ч;
- условие № 3. С аэрациеи, с перемешиванием, с рециркуляцией расход 0,5; 1,0; 2,0 м3/ч.


Результаты С-кривые полученные для условия 1

Результаты С-кривые полученные для условия 2

Результаты С-кривые полученные для условия 3

Расчет дисперсии

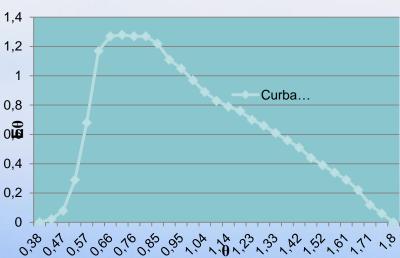
Условия	В, часы	δ^2	$\delta^2_{ heta}$	D/uL
Расход - 0,5 м ³ /ч, без аэрации и без рециркуляции	16,93	91844,80	0,088	0,037
Расход - 1,0 м ³ /ч, без аэрации и без рециркуляции	10,44	36198,34	0,092	0,039
Расход - 2,0 м ³ /ч, без аэрации и без рециркуляции	6,11	9784,37	0,072	0,031
Расход - 0,5 м ³ /ч, с аэрацией, с перемешиванием, без рециркуляции	14,09	98312,0,5	0,137	0,055
Расход - 1,0 м ³ /ч, с аэрацией, с перемешиванием, без рециркуляции	8,49	34425,32	0,132	0,053
Расход - 2,0 м ³ /ч, с аэрацией, с перемешиванием, без рециркуляции	4,71	7313,98	0,091	0,038
Расход - 0,5 м ³ /ч, рециркулированный расход 1,0 м ³ /ч, с аэрацией, с перемешиванием, с рециркуляции	13,76	92935,82	0,136	0,055
Расход - 0,5 м ³ /ч, рециркулированный расход 1,5 m ³ /h, с аэрацией, с перемешиванием, с рециркуляции	12,91	102388,85	0,170	0,066
Расход - 1,0 м ³ /ч, рециркулированный расход 2,0 м ³ /ч, с аэрацией, с перемешиванием, с рециркуляции	8,22	27357,44	0,112	0,046
Расход - 1,0 м ³ /ч, рециркулированный расход 3,0 м ³ /ч, с аэрацией, с перемешиванием, с рециркуляции	8,11	30197,20	0,127	0,051
Расход - 2,0 м ³ /ч, рециркулированный расход 4,0 м ³ /ч, с аэрацией, с перемешиванием, с рециркуляции	4,48	15380,31	0,212	0,080
Расход - 2,0 м ³ /ч, рециркулированный расход 6,0 м ³ /ч, с аэрацией, с перемешиванием, с рециркуляции	5,88	24332,87	0,195	0,075

Кривая Е – распределение времени пребывания в реакторе

Без аэрации и без г	рециркул	тяции -	расход 1.	$0' \text{M}^3/\text{q}$	С аэра	цией. с п	еременни	ванием. б	ез neпиn	кулянии	- расхол	$1.0 \mathrm{M}^{2}$	3/ч
	, 1 2	· '	1 ''	, 	1	Λ	T	T	Λ	Tr	TC	'	

θ	E	$\mathbf{E}_{\mathbf{\theta}}$	θ	E	$\mathbf{E}_{\mathbf{\theta}}$
0,38	0,0	0,0	1,14	0,076	0,79
0,42	0,002	0,02	1,19	0,073	0,76
0,47	0,008	0,08	1,23	0,068	0,70
0,52	0,028	0,29	1,28	0,064	0,66
0,57	0,066	0,68	1,33	0,059	0,61
0,61	0,113	1,17	1,38	0,054	0,56
0,66	0,122	1,27	1,42	0,049	0,51
0,71	0,123	1,28	1,47	0,043	0,44
0,76	0,122	1,27	1,52	0,038	0,39
0,80	0,122	1,27	1,57	0,033	0,34
0,85	0,117	1,22	1,61	0,028	0,29
0,90	0,107	1,11	1,66	0,022	0,22
0,95	0,101	1,05	1,71	0,012	0,12
1,00	0,093	0,97	1,76	0,006	0,06
1,04	0,086	0,89	1,80	0,0	0,0
1,09	0,080	0,83			

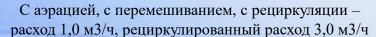
С аэрацией, с перемешиванием, с рециркуляции – расход $1,0 \text{ м}^3/\text{ч}$, рециркулированный расход $2,0 \text{ м}^3/\text{ч}$

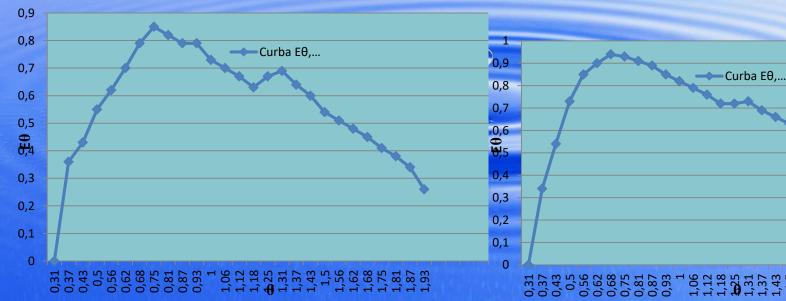

θ	E	$\mathbf{E}_{\mathbf{\theta}}$	θ	E	$\mathbf{E}_{\mathbf{\theta}}$
0,31	0,0	0,0	1,18	0,077	0,63
0,37	0,044	0,36	1,25	0,082	0,67
0,43	0,053	0,43	1,31	0,084	0,69
0,50	0,068	0,55	1,37	0,079	0,64
0,56	0,076	0,62	1,43	0,074	0,60
0,62	0,086	0,70	1,50	0,066	0,54
0,68	0,097	0,79	1,56	0,063	0,51
0,75	0,104	0,85	1,62	0,059	0,48
0,81	0,100	0,82	1,68	0,055	0,45
0,87	0,097	0,79	1,75	0,051	0,41
0,93	0,097	0,79	1,81	0,047	0,38
1,00	0,090	0,73	1,87	0,042	0,34
1,06	0,086	0,70	1,93	0,032	0,26
1,12	0,082	0,67			

θ	E	$\mathbf{E}_{\mathbf{\theta}}$	θ	E	$\mathbf{E}_{\mathbf{\theta}}$
0,35	0,0	0,0	1,29	0,069	0,58
0,41	0,031	0,26	1,35	0,064	0,54
0,47	0,070	0,59	1,41	0,061	0,51
0,52	0,099	0,84	1,47	0,057	0,48
0,58	0,105	0,89	1,52	0,056	0,47
0,64	0,102	0,86	1,58	0,052	0,44
0,70	0,101	0,85	1,64	0,049	0,41
0,76	0,101	0,85	1,70	0,045	0,38
0,82	0,101	0,85	1,76	0,041	0,34
0,88	0,098	0,83	1,82	0,036	0,30
0,94	0,097	0,82	1,88	0,031	0,26
1,00	0,094	0,79	1,94	0,028	0,23
1,05	0,089	0,75			
1,11	0,083	0,70			
1,17	0,082	0,69			
1,23	0,072	0,61			


С аэрацией, с перемешиванием, с рециркуляции — расход $1,0 \text{ м}^3/\text{ч}$, рециркулированный расход $3,0 \text{ м}^3/\text{ч}$

	θ	E	$\mathbf{E}_{\mathbf{\theta}}$	θ	E	$\mathbf{E}_{\mathbf{\theta}}$
	0,31	0,0	0,0	1,12	0,094	0,76
	0,37	0,043	0,34	1,18	0,090	0,72
	0,43	0,067	0,54	1,25	0,089	0,72
	0,50	0,091	0,73	1,31	0,091	0,73
	0,56	0,105	0,85	1,37	0,086	0,69
	0,62	0,111	0,90	1,43	0,082	0,66
۰	0,68	0,116	0,94	1,50	0,078	0,63
	0,75	0,115	0,93	1,56	0,075	0,60
	0,81	0,113	0,91	1,62	0,072	0,58
ı	0,87	0,110	0,89	1,68	0,068	0,55
i	0,93	0,105	0,85	1,75	0,061	0,49
	1,00	0,102	0,82	1,81	0,054	0,43
	1,06	0,098	0,79			





С аэрацией, с перемешиванием, без рециркуляции - расход 1,0 м3/ч

С аэрацией, с перемешиванием, с рециркуляции — расход 1,0 м3/ч, рециркулированный расход 2,0 м3/ч

Состав неочищенных сточных вод в течение дня

Имя	время 8-00	время 10-00	время 12-00	время 14-00	время 16-00	Средний
ВВ, мг/л	78,2	70,0	108,4	64,4	129,6	90,1
$\mathbf{Б}\Pi\mathbf{K}_{5}$, мг/л	121,0	160,3	205,0	140,1	184,2	162,1
Азот, мг/л	21,5	70,6	71,1	68,5	65,7	59,4
Фосфор, мг/л	3,0	13,7	10,4	12,8	10,6	10,1
Температура, °С	10,2	10,2	10,3	10,3	10,3	10,3

Характеристики очищенной воды

Имя	Средний
ВВ, мг/л	16,2
БПК ₅ , мг/л	8,5
Азот, мг/л	14,5
Фосфор, мг/л	1,0
Температура, °С	10,3

Выводы

Исходя из экспериментов по выявлению гидродинамического режима движения воды в биореакторе были сделаны следующие выводы:

- 1. Максимальная концентрация трассера (NaCl) для условия № 1 отмечена за более длительное время, чем условие № 2, что показывает, что жидкость, состоящая из сточных вод воздух, и подвергается перемешиванию. Использование и мешалки приводной к более быстрому перемещению в биореакторе примерно на 30%. Это отмечено на всех трёх графиках, которые были выполнены для разных расходов;
- 2. В то же время наблюдается, что максимальная концентрация во времени приближается в соответствии с расчетами для расходов $1,0\,\mathrm{m}^3/\mathrm{u}$, то есть за время пребывания $2.0\,\mathrm{u}$ часа для каждого отделения;
- 3. Эффективность экспериментальной установки для очистки сточных вод составляет около 90 95%.

Спасибо за внимание!!!